郑凯敏 1,2,3,4张利剑 1,2,3,4,*
作者单位
摘要
1 南京大学固体微结构物理国家重点实验室,江苏 南京 210023
2 智能光传感与调控技术教育部重点实验室,江苏 南京 210023
3 人工微结构科学与技术协同创新中心,江苏 南京 210023
4 南京大学现代工程与应用科学学院,江苏 南京 210023
量子精密测量可以提供超越传统测量方法极限的测量精度和分辨能力。在过去几十年里,固定参数的量子增强技术取得了长足的进展。时变参数估计是引力波探测、导航定位等实际工程应用中的关键问题之一。因此,设计有效的量子增强时变参数估计方案并完善时变参数估计理论也是量子精密测量中的重要研究内容。最近研究发现时变参数估计的精度极限与信号自身连续性质密切相关。同时,与固定信号测量类似,压缩态等非经典资源也可以提高时变参数估计的精度。介绍了几种时变参数估计的精度极限,并总结了国内外量子增强时变参数估计的相关研究进展。
卡尔曼滤波 Heisenberg极限 Bayesian估计 Ornstein-Uhlenbeck随机信号 光子通量 
激光与光电子学进展
2023, 60(11): 1106009
Author Affiliations
Abstract
1 National Laboratory of Solid State Microstructures and College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
2 Research Center for Quantum Sensing, Zhejiang Lab, Hangzhou 310000, China
Discriminating two spatially separated sources is one of the most fundamental problems in imaging. Recent research based on quantum parameter estimation theory shows that the resolution limit of two incoherent point sources given by Rayleigh can be broken. However, in realistic optical systems, there often exists coherence in the imaging light field, and there have been efforts to analyze the optical resolution in the presence of partial coherence. Nevertheless, how the degree of coherence between two point sources affects the resolution has not been fully understood. Here, we analyze the quantum-limited resolution of two partially coherent point sources by explicitly relating the state after evolution through the optical systems to the coherence of the sources. In particular, we consider the situation in which coherence varies with the separation. We propose a feasible experiment scheme to realize the nearly optimal measurement, which adaptively chooses the binary spatial-mode demultiplexing measurement and direct imaging. Our results will have wide applications in imaging involving coherence of light.
quantum metrology quantum imaging partial coherence 
Chinese Optics Letters
2023, 21(4): 042601
Author Affiliations
Abstract
1 National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
2 Center for Quantum Science and Technology, Jiangxi Normal University, Nanchang 330022, China
3 State Key Laboratory of Precision Spectroscopy, Joint Institute of Advanced Science and Technology, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
4 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
5 e-mail: jtjing@phy.ecnu.edu.cn
6 e-mail: lijian.zhang@nju.edu.cn
Quantum stochastic phase estimation has many applications in the precise measurement of various physical parameters. Similar to the estimation of a constant phase, there is a standard quantum limit for stochastic phase estimation, which can be obtained with the Mach–Zehnder interferometer and coherent input state. Recently, it has been shown that the stochastic standard quantum limit can be surpassed with nonclassical resources such as squeezed light. However, practical methods to achieve quantum enhancement in the stochastic phase estimation remain largely unexplored. Here we propose a method utilizing the SU(1,1) interferometer and coherent input states to estimate a stochastic optical phase. As an example, we investigate the Ornstein–Uhlenback stochastic phase. We analyze the performance of this method for three key estimation problems: prediction, tracking, and smoothing. The results show significant reduction of the mean square error compared with the Mach–Zehnder interferometer under the same photon number flux inside the interferometers. In particular, we show that the method with the SU(1,1) interferometer can achieve fundamental quantum scaling, achieve stochastic Heisenberg scaling, and surpass the precision of the canonical measurement.
Photonics Research
2020, 8(10): 10001653
Xiang Li 1†Jingrou Tan 1†Kaimin Zheng 2†Labao Zhang 1,4,*[ ... ]Peiheng Wu 1
Author Affiliations
Abstract
1 School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
2 College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
3 Jiangsu Key Laboratory of Spectral Imaging and Intelligence Sense, Nanjing University of Science and Technology, Nanjing 210094, China
4 e-mail: Lzhang@nju.edu.cn
5 e-mail: lijian.zhang@nju.edu.cn
Laser communication using photons should consider not only the transmission environment’s effects, but also the performance of the single-photon detector used and the photon number distribution. Photon communication based on the superconducting nanowire single-photon detector (SNSPD) is a new technology that addresses the current sensitivity limitations at the level of single photons in deep space communication. The communication’s bit error rate (BER) is limited by dark noise in the space environment and the photon number distribution with a traditional single-pixel SNSPD, which is unable to resolve the photon number distribution. In this work, an enhanced photon communication method was proposed based on the photon number resolving function of four-pixel array SNSPDs. A simulated picture transmission was carried out, and the error rate in this counting mode can be reduced by 2 orders of magnitude when compared with classical optical communication. However, in the communication mode using photon-enhanced counting, the four-pixel response amplitude for counting was found to restrain the communication rate, and this counting mode is extremely dependent on the incident light intensity through experiments, which limits the sensitivity and speed of the SNSPD array’s performance advantage. Therefore, a BER theoretical calculation model for laser communication was presented using the Bayesian estimation algorithm in order to analyze the selection of counting methods for information acquisition under different light intensities and to make better use of the SNSPD array’s high sensitivity and speed and thus to obtain a lower BER. The counting method and theoretical model proposed in this work refer to array SNSPDs in the deep space field.
Photonics Research
2020, 8(5): 05000637

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!